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A wind-forced weakly nonlinear weakly dispersive evolution model is derived for a
continuously stratified circular lake of slowly varying depth under the effect of the
Earth’s rotation. The model was numerically integrated to investigate the evolution of
long internal waves of vertical mode one for various sets of environmental parameters.
It is demonstrated that the Kelvin wave steepens as it propagates, and the steepened
front subsequently generates a train of oscillatory waves. It is demonstrated that
Poincaré waves do not steepen, but their amplitude is modulated in an oscillatory
manner with time, exhibiting a pseudo recurrence character. The model was applied to
the wind forced problem, confirming that Kelvin and Poincaré waves are the dominant
response. Energy partition among Kelvin and Poincaré wave modes is estimated as
a function of wind-forcing parameters. For large lakes, the most significant wave
amplitude is found in the Kelvin wave mode, but the gross field energy is most
significantly contained in Poincaré wave modes.

1. Introduction
The hydrodynamics of a lake is to a greater or lesser extent affected by Coriolis

acceleration introduced by the Earth’s rotation, and Coriolis acceleration has a
determining role in lake motions when the horizontal scale is sufficiently large. A
useful measure of this scale is the Rossby radius R0 = cs/f , where cs is a characteristic
velocity scale and f is the inertial frequency. Since typical characteristic phase speeds
of internal waves are smaller than that of surface waves by a few orders of magnitude,
the effect of Earth’s rotation, as well as the amplitude of fluid motion, are significantly
greater in the case of internal waves as opposed to barotropic motions (Csanady 1975).
As a rule of thumb, if the width of a lake is greater than the Rossby radius, the effect
of the Earth’s rotation needs to be taken into account. In such a large lake, a typical
response excited by wind stress forcing over the lake surface is dominated by Kelvin
and Poincaré waves of vertical mode one. A Kelvin wave is a shore-trapped wave
having a large alongshore current, and the amplitude decays exponentially away from
the shore. It propagates in a cyclonic direction along the shore with frequency less
than the inertial frequency. A Poincaré wave is an offshore type of wave having its
largest perturbation current located near the basin centre, rotating anti-cyclonically
with frequency larger than the inertial frequency.

The theoretical foundations based on the linear hydrostatic assumption applied
to the hydrodynamic equations of motion were developed by Lamb (1932) and
Csanady (1967) for a circular lake of uniform depth. One of the beautiful results
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Figure 1. Eigenfrequency ω as a function of scaled Burger number B/c for the lowest
three azimuthal (M) and radial (R) modes. In the northern hemisphere the positive (+) and
negative (−) frequencies represent the waves of cyclonic (counter-clockwise) rotation and of
anti-cyclonic (clockwise) rotation, respectively.

in this theory is a dispersion relation as shown in figure 1, providing a discrete
horizontal modal frequency space, with either cyclonic or anti-cyclonic polarity. The
dimensionless frequency ω/f is exhibited as a function of the Earth’s rotation, which
is parameterized as a ratio between the lake radius r0 relative to the Rossby radius
R0 (i.e. the Burger number B). Since the phase speed of internal waves is dependent
on the stratification, which is in general seasonally varying, the effect of the Earth’s
rotation also varies seasonally (Antenucci, Imberger & Saggio 2000).

Real lakes are confined within complex boundaries, and they are subject to
temporally and spatially irregular forcing, resulting in a ‘zoo’ of complex responses
comprising internal waves, topographic gyres and coastal jets (Csanady 1975). To
predict such physical responses, three-dimensional hydrodynamic models have been
developed and their use has expanded in recent years (e.g. Beletsky & O’Connor 1997;
Wang & Hutter 1998; Hodges et al. 2000; Rueda, Schladow & Pálmarsson 2003).
Nevertheless, the linear hydrostatic model is still a most useful theoretical tool because
of its simplicity, and also because of its use for numerical or experimental validation.
Application of the dispersion relation for a circular basin of uniform depth is widely
used for comparing the wave frequency spectrum obtained from field, laboratory
or numerical experiments. Specifically, gross energetics defined by the model have
been applied to Lake Kinneret to estimate the dissipation time scale (Antenucci &
Imberger 2001). Also, the model was recently applied to study horizontal transport of
fluid particles for various wind-forcing parameters, and chaotic advection of particles
was explored (Stocker & Imberger 2003).
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The linear model, however, is valid only if the amplitude of fluid motion is
sufficiently small relative to the controlling vertical length scale. Nonlinear effects in
internal fluid responses have been well studied in a non-rotating frame, by which
the physics is isolated from the effect of the Earth’s rotation. Such studies allow one
to eliminate the lateral horizontal coordinate from consideration, greatly facilitating
the development of reduced models amenable to rapid simulation (viz. Sakai &
Redekopp 2010). It has been well recognized that a wave of finite amplitude steepens
as it propagates, and the front subsequently generates a train of oscillatory waves
following its own tail (Hunkins & Fliegel 1973; Farmer 1978; Horn, Imberger & Ivey
2001; Stashchuk, Vlasenko & Hutter 2005, etc.). Such sub-basin-scale waves shoal at
sloping boundaries, spatially confined regions where they further steepen and break
due to strong nonlinear advection, dissipating much of their energy through bottom
friction and turbulent mixing (Helfrich 1992; Michallet & Ivey 1999; Vlasenko &
Hutter 2002; Boegman, Ivey & Imberger 2005a). Energy transfer among vertical
modes is also an important nonlinear process which has drawn much attention in
recent years (Hüttemann & Hutter 2001; Vlasenko & Hutter 2001; Gerkema 2003;
Sakai & Redekopp 2009b). These nonlinear effects have important implications for
the lake ecology by driving transport of biological and chemical particles.

Basin-scale waves having large amplitude (i.e. of the order of 10 metres) are often
observed in large lakes. In this study we intend to explore the nonlinear effects
in basin-scale fluid motions in a rotating frame through an asymptotic modelling
approach. In § 2 we formulate a weakly nonlinear weakly dispersive wind-forced
evolution model for a circular lake of variable depth. A circular lake boundary
is chosen for numerical simplicity and to isolate the essential intrinsic physics of
rotating lakes from the geometric effect of radial variation of the shore boundary. In
§ 3 we present a summary of the linear hydrostatic model to provide preliminaries for
the rest of the study. The nonlinear evolution model developed here can be solved
only numerically, and the method is described briefly in § 4. Following preliminary
considerations on the multi-vertical-mode model in § 5, we apply in § 6 the model
to initial-value problems for Kelvin and Poincaré waves separately, exploring their
evolution characteristics for different Burger numbers, amplitudes, lake dimensions
and topographies. In § 7 we apply the model to wind-forced problems to determine the
dominant wave modes emerging under natural forcing, and then also estimate their
energy partition. We summarize the study in § 8, offering some general perspectives
based on results obtained in this study.

2. Model formulation
We consider a stable continuously stratified water body confined in a cylindrical

lake of variable depth. Wind stress is applied over the lake surface where we impose
a slip-free rigid-lid boundary condition to eliminate the barotropic wave mode
from consideration. For the primitive equations used in this study, we choose the
Boussinesq-approximated inviscid equations of motion for the hydrodynamic field
perturbed from the hydrostatic state. We write the equations in the form

∇ · u = 0,

∂u
∂t

+ f × u + (u · ∇)u = −∇p +
∂τ h

∂z
− σ ez,

∂σ

∂t
+ u · ∇σ = N2w,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)
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Figure 2. Variable depth model.

where the velocity field is u = uer + veθ + wez, the Coriolis vector is f = f ez, the
density-divided pressure is p, the density-divided horizontal stress is τ h = τr er + τθ eθ ,
the perturbed buoyancy is σ = ρg/ρ0 and the Brunt–Väisälä frequency N is defined
as

N2(z) = − g

ρ0

dρs(z)

dz
. (2.2)

Solutions to (2.1) are dictated by free-slip impermeable boundary conditions at all
the basin boundary surfaces, namely

w = 0 at z = 0,

u · ∇[z − b(r, θ)] = 0 at z = −hb(r, θ),

u = 0 at r = r0,

⎫⎪⎬
⎪⎭ (2.3)

where r0 is the radius of the lake, hb is the total depth function and b is the height
of the topography measured from a reference horizontal surface (see figure 2). We
assume that hb (or b) varies slowly in space relative to the average depth.

We apply a long-wave scaling to the radial coordinate, time and the Coriolis
parameter, defining the scaled quantities

(R, T ) = µ(r, t), f = µF, (2.4)

where µ(�1) is the long-wave scaling parameter. The scaling of f is introduced so that
the Coriolis force affects the dynamics at the leading-order approximation. Assuming
further that the depth variation is slow on the scale of the typical wavelength, we
introduce a slow space radial coordinate ξ ,

ξ = µ3r. (2.5)

After introducing these scaled variables, we expand the dependent variables in an
asymptotic series by use of the amplitude parameter ε (ε � 1):

(u, v, p, σ ) = ε
(
u(1), v(1), p(1), σ (1)

)
+ ε2

(
u(2), · · ·

)
+ · · · ,

w = µε
(
w(1) + εw(2) + · · ·

)
,

τr,θ = µ3ε
(
τ

(1)
r,θ + ετ

(2)
r,θ + · · ·

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

Further, we introduce the Korteweg–de Vries (KdV) scaling, ε = µ2, in order for weak
nonlinearity and the leading non-hydrostatic correction to balance in the same order.
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The leading-order balance gives a linear hydrostatic model:

∂u(1)

∂R
+

u(1)

R
+

1

R

∂v(1)

∂θ
+

∂w(1)

∂z
= 0,

∂u(1)

∂T
− Fv(1) = −∂p(1)

∂R
,

∂v(1)

∂T
+ Fu(1) = − 1

R

∂p(1)

∂θ
,

∂p(1)

∂z
− σ (1) = 0,

∂σ (1)

∂T
− N2(z)w(1) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

From (2.7), combining the horizontal divergence and curl of the horizontal momentum
equations, and eliminating p(1) and σ (1) using the vertical momentum and continuity
equations, one obtains the linear long internal wave equation

∂2

∂T 2

(
∂2w(1)

∂z2

)
+ ∇2

h{N2(z)w(1)} + F2 ∂2w(1)

∂z2
= 0, (2.8)

where ∇2
h denotes the horizontal Laplacian (i.e. ∇2

h ≡ ∂2/∂R2 +R−1∂/∂R +R−2∂2/∂θ2).
We note that w(1) vanishes at both the upper and the lower boundaries. Customarily,
one can seek a solution for w(1) in terms of a slowly varying vertical eigenfunction:

w(1) ∼ W (R, ξ, θ, T )φ(ξ, θ, z). (2.9)

Substituting (2.9) into (2.8), and after enforcing periodicity on N2φ in the azimuthal
(θ) direction, we obtain the eigenvalue problem

φ′′
l +

N2(z)

c2
l (ξ, θ)

φl = 0; φl |z=0 = φl |z=−hb
= 0; l = 1, 2, · · · . (2.10)

The quantities cl and φl are the eigenvalue (vertical modal phase speed) and
corresponding eigenfunction, respectively, and the prime denotes a vertical derivative
(φ′ ≡ ∂φ/∂z). Equation (2.10) is an ordinary differential equation (ODE) along a
vertical line for a fixed horizontal coordinate, and it possesses the orthogonality
relation∫ 0

−hb

φ′
kφ

′
l dz =

Il

c2
l

δkl;

∫ 0

−hb

N2φkφl dz = Ilδkl; Il =

∫ 0

−hb

N2φ2
l dz, (2.11)

where δkl is Kroneker’s delta.
It is convenient to expand all dependent variables in (2.7) by using the eigenfunction

in the form:

u(1) =
∑

l

U
(1)
l (R, ξ, θ, T )φ′

l(ξ, θ, z); v(1) =
∑

l

V
(1)
l φ′

l ,

w(1) =
∑

l

W
(1)
l φl; p(1) =

∑
l

P
(1)
l φ′

l; σ (1) =
∑

l

Z
(1)
l N2(z)φl.

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

After substituting (2.12) into (2.7), and using (2.11), and then eliminating Pl and Wl ,
we obtain a set of evolution equations for the velocity amplitudes (Ul and Vl) and the
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isopycnal amplitude (Zl):

∂U
(1)
l

∂T
− FV

(1)
l + c2

l

∂Z
(1)
l

∂R
= 0,

∂V
(1)
l

∂T
+ FU

(1)
l +

c2
l

R

∂Z
(1)
l

∂θ
= −

∑
l′

{
δll′

∂c2
l

∂θ
+ α

(θ)
ll′ c2

l

}
Z

(1)
l′

R
,

∂Z
(1)
l

∂T
+

∂U
(1)
l

∂R
+

U
(1)
l

R
+

1

R

∂V
(1)
l

∂θ
= −

∑
l′

α
(θ)
ll′

V
(1)
l′

R
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

where α
(θ)
ll′ is defined as

α
(θ)
ll′ =

〈
φ′

l

∂φ′
l′

∂θ

〉
≡ c2

l

Il

∫ 0

−hb

φ′
l

∂φ′
l′

∂θ
dz. (2.14)

In (2.13), summation terms are modal coupling terms resulting from variable depth
in the azimuthal direction. Proceeding with the next order balance in (2.1) gives

∂u(2)

∂R
+

u(2)

R
+

1

R

∂v(2)

∂θ
+

∂w(2)

∂z
= −∂u(1)

∂ξ
,

∂u(2)

∂T
− Fv(2) +

∂p(2)

∂R
= −∂p(1)

∂ξ
−

[(
u(1) · ∇

)
u(1)

]
· er +

∂τ (1)
r

∂z
,

∂v(2)

∂T
+ Fu(2) +

1

R

∂p(2)

∂θ
= −

[(
u(1) · ∇

)
u(1)

]
· eθ +

∂τ
(1)
θ

∂z
,

∂p(2)

∂z
+ σ (2) = −∂w(1)

∂T
,

∂σ (2)

∂T
− N2w(2) = −u(1) · ∇σ (1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

The second-order boundary conditions for w(2) are

w(2) = 0 at z = 0,

w(2) = u(1) ∂b

∂ξ
+

v(1)

ξ

∂b

∂θ
at z = −hb.

⎫⎪⎬
⎪⎭ (2.16)

Both weakly nonlinear terms and the leading non-hydrostatic term (∂w(1)/∂T ) appear
in (2.15) owing to use of the KdV scaling. The leading-order effect of variable depth
now appears in (2.16) explicitly. Without argument, we simply expand u(2), v(2), p(2)

and σ (2) in a similar way in terms of the leading-order variables as shown in (2.12).
However, w(2) in the first equation (mass conservation) in (2.15) cannot be expanded
by φl , because φl does not satisfy (2.16) at z = −hb. Thereby, when applying the
orthogonality relation to the mass conservation equation, we integrate the ∂w(2)/∂z

term via integration by parts applying (2.16). The remaining integral can be easily
evaluated after eliminating w(2) by using the last equation in (2.15). Except for the
handling of the w(2) term in such a way, we follow the same procedure as in the
derivation of (2.13). After some algebra, we find the counterpart as follows:

∂U
(2)
l

∂T
− FV

(2)
l + c2

l

∂Z
(2)
l

∂R
= −c2

l

∂Z
(1)
l

∂ξ
−

∑
l′

{
δll′

∂c2
l

∂ξ
+ α

(r)
ll′ c

2
l′

}
Z

(1)
l′

−
∑
l′l′′

{
β

(u,v)
ll′l′′

(
U

(1)
l′

∂U
(1)
l′′

∂R
+

V
(1)
l′

R

∂U
(1)
l′′

∂θ
− V

(1)
l′ V

(1)
l′′

R

)
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+ β
(w)
ll′l′′D

(1)
l′ U

(1)
l′′ + β

(θ)
ll′l′′

V
(1)
l′ U

(1)
l′′

R
+ β

(w)
ll′l′′

∑
l′′′

α
(θ)
l′l′′′

V
(1)
l′′′ U

(1)
l′′

R

}

+
∑

l′

∂

∂T

{
γ

(w)
ll′

∂D
(1)
l′

∂R
+ γ

(α1)
ll′

(
1

R

∂V
(1)
l′

∂R
− V

(1)
l′

R2

)}

+
c2
l

Il

{
φ′

lτ
(1)
r

∣∣
z=0

− φ′
lτ

(1)
r

∣∣
z=−hb

}
+

1

c2
l

〈N2φlτ
(1)
r 〉, (2.17a)

∂V
(2)
l

∂T
+ FU

(2)
l +

c2
l

R

∂Z
(2)
l

∂θ
= −

∑
l′

{
δll′

∂c2
l

∂θ
+ α

(θ)
ll′ c2

l′

}
Z

(2)
l′

R
−

∑
l′l′′

{
β

(u,v)
ll′l′′

(
U

(1)
l′

∂V
(1)
l′′

∂R

+
V

(1)
l′

R

∂V
(1)
l′′

∂θ
+

U
(1)
l′ V

(1)
l′′

R

)
+ β

(w)
ll′l′′D

(1)
l′ V

(1)
l′′ + β

(θ)
ll′l′′

V
(1)
l′ V

(1)
l′′

R

+ β
(w)
ll′l′′

∑
l′′′

α
(θ)
l′l′′′

V
(1)
l′′′ V

(1)
l′′

R

}
+

∑
l′

∂

∂T

{
γ

(w)
ll′

1

R

∂D
(1)
l′

∂θ

+ γ
(α2)
ll′

D
(1)
l′

R
+ γ

(α1)
ll′

1

R2

∂V
(1)
l′

∂θ
+ γ

(α3)
ll′

V
(1)
l′

R2

}

+
c2
l

Il

{
φ′

lτ
(1)
θ

∣∣∣∣
z=0

− φ′
lτ

(1)
θ

∣∣∣∣
z=−hb

}
+

1

c2
l

〈N2φlτ
(1)
θ 〉, (2.17b)

∂Z
(2)
l

∂T
+

∂U
(2)
l

∂R
+

U
(2)
l

R
+

1

R

∂V
(2)
l

∂θ
= −∂U

(1)
l

∂ξ
+

∑
l′

{
c2
l

Il

[
φ′

lφ
′
l′
∂b

∂ξ

]
z=−hb

− α
(r)
ll′

}
U

(1)
ll′

+
∑

l′

{
c2
l

Il

[
φ′

lφ
′
l′
∂b

∂θ

]
z=−hb

V
(1)
l′

ξ
− α

(θ)
ll′

V
(2)
l′

R

}

−
∑
l′l′′

{
σ

(u,v)
ll′l′′

(
U

(1)
l′

∂Z
(1)
l′′

∂R
+

V
(1)
l′

R

∂Z
(1)
l′′

∂θ

)
− σ

(w)
ll′l′′D

(1)
l′ Z

(1)
l′′

+ σ
(θ)
ll′l′′

V
(1)
l′ Z

(1)
l′′

R
− σ

(w)
ll′l′′

∑
l′′′

α
(θ)
l′l′′′

V
(1)
l′′′ Z

(1)
l′′

R

}
, (2.17c)

where,

D
(1)
l =

∂U
(1)
l

∂R
+

U
(1)
l

R
+

1

R

∂V
(1)
l

∂θ
, α

(r)
ll′ =

〈
φ′

l

∂φ′
l′

∂ξ

〉
, (2.18a, b)

β
(u,v)
ll′l′′ = 〈φ′

lφ
′
l′φ

′
l′′ 〉, β

(w)
ll′l′′ =

〈
φ′

lφl′
N2

c2
l′′

φl′′

〉
, β

(θ)
ll′l′′ =

〈
φ′

lφ
′
l′
∂φl′′

∂θ

〉
, (2.18c–e)

σ
(u,v)
ll′l′′ =

〈
φl

c2
l

φ′
l′ N2φl′′

〉
, σ

(w)
ll′l′′ =

〈
φl

c2
l

φl′(N2φl′′)′
〉

, (2.18f , g)

σ
(θ)
ll′l′′ =

〈
φl

c2
l

φl′ N2 ∂φl′′

∂θ

〉
, γ

(w)
ll′ = 〈φlφl′ 〉, γ

(α1)
ll′ =

∑
l′′

γ
(w)
ll′′ α

(θ)
l′′l′, (2.18h–j )

γ
(α2)
ll′ =

∂γ
(w)
ll′

∂θ
+ γ

(α1)
ll′ , γ

(α3)
ll′ =

∂γ
(α1)
ll′

∂θ
+

∑
l′′

α
(θ)
ll′′ γ

(α1)
l′′l′ . (2.18k, l)



Internal waves in large lakes 267

Equations (2.17a–c) contain weak nonlinearity, a weak non-hydrostatic (dispersive)
effect, a slowly varying depth effect, wind stress and bottom friction in the same
order. These terms are all coupled, implying energy transfer among all vertical modes.
Modal coupling of nonlinear terms is expressed by double and triple sums. With
spatially variable coefficients, the behaviour of these nonlinear terms is undoubtedly
expected to be quite complicated. The coefficients of topographic coupling terms α

(r)
ll′

in (2.18a–l) and α
(θ)
ll′ in (2.14) can be further simplified into a computationally efficient

form as given by our earlier work (Sakai & Redekopp 2009b). A general derivation of
the topographic coupling coefficients for wave propagation over varying topographies
has been developed by Griffiths & Grimshaw (2007) in their study of the internal tide
in continental shelf regions.

In order to expose the basic set of parameters underlying the evolution model
given in (2.17), we introduce characteristic scales for the dependent and independent
variables and form dimensionless equivalents of (2.17). However, both for brevity
of presentation and for specific reference in later sections, only the dimensionless
equations for the evolution of a single vertical mode will be presented here. The
resulting set of equations is:

∂U

∂t
− BV +

∂

∂r
(c2Z) = − c2α(r)Z −

{
β (u,v)

(
U

∂U

∂r
+

V

r

∂U

∂θ
− V 2

r

)

+ β (w)DU + β (θ,w) V U

r

}
+ Λ2 ∂

∂t

{
γ (w) ∂D

∂r

+ γ (α1)

(
1

r

∂V

∂r
− V

r2

)}
+

ks

Wτr, (2.19a)

∂V

∂t
+ BU +

1

r

∂

∂θ
(c2Z) = − c2α(θ) Z

r
−

{
β (u,v)

(
U

∂V

∂r
+

V

r

∂V

∂θ
+

UV

r

)

+ β (w)DV + β (θ,w) V
2

r

}
+ Λ2 ∂

∂t

{
γ (w) 1

r

∂D

∂θ
+ γ (α2)

D

r

+ γ (α1)
1

r2

∂V

∂θ
+ γ (α3)

V

r2

}
+

ks

Wτθ , (2.19b)

∂Z

∂t
+

∂U

∂r
+

U

r
+

1

r

∂V

∂θ
= κ (r)U + κ (θ) V

r
−

{
σ (u,v)

(
U

∂Z

∂r
+

V

r

∂Z

∂θ

)

− σ (w)DZ + σ (θ,w) V Z

r

}
, (2.19c)

where all vertical modal indices are dropped, and additional coefficients are defined
as

β (θ,w) = β (θ) + β (w)α(θ), σ (θ,w) = σ (θ) − σ (w)α(θ), ks =
c2

I
φ′|z=0,

κ (r) =
1

I

(
φ′)2

∣∣
z=−hb

× ∂b

∂r
− α(r), κ (θ) =

1

I
(φ′)2

∣∣
z=−hb

× ∂b

∂θ
− α(θ).

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

In these equations we scale r by the lake radius r0, z and Z by the epilimnion (mixing
layer) depth h1, N by its maximum value N0, t by r0/N0h1, c by N0h1, U and V

by N0h
2
1 and τr,θ |z=0 by u2

∗0, where u∗0 is a surface friction velocity induced by the
wind stress.
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There are three important dimensionless parameters in (2.19a, b): the Burger
number B, the Wedderburn number W and the aspect ratio Λ. The Burger number
B used in this study is defined as a ratio between the lake radius r0 and internal
Rossby radius of deformation R0 = N0h1/f :

B =
f r0

N0h1

=
r0

R0

. (2.21)

The Wedderburn number is defined as a ratio between baroclinic pressure gradient
and the wind stress:

W =
N2

0h
3
1

u2
∗0r0

. (2.22)

The aspect ratio Λ in (2.19a, b) is defined as Λ =h1/r0, which quadratically scales the
dispersive terms. The vertical structure of the stratification and the non-uniform depth
are implicitly included in the linear phase speed c and in each integral coefficient
defined in (2.18a, b) and (2.20).

In the formation of (2.19) from (2.17), we have neglected the bottom friction term
(τr,θ |z=−hb

= 0), and also assumed that the wind stress decreases to zero at the base of
the epilimnion (i.e. 〈N2φτr〉 = 〈N2φτθ〉 =0). The effect of wind stress penetration into
the metalimnion was examined in Sakai & Redekopp (2009b), and is not pursued
further here. Since we neglect the influence of bottom friction, the model should
represent the wind-generated response for the order of several days, which is a typical
time scale for forced internal waves in large lakes (Csanady 1968; Antenucci &
Imberger 2001).

3. Linear hydrostatic model
Before proceeding to a simulation of the forced nonlinear response, we summarize

the set of exact solutions to the linear hydrostatic problem for uniform depth.
Although the model has been well documented (Lamb 1932; Csanady 1967), we
include the results in this section since they provide essential preliminaries for the rest
of this report. The model is the same as (2.13), which we write in a dimensionless
form:

∂U

∂t
− BV + c2 ∂Z

∂r
= 0,

∂V

∂t
+ BU + c2 1

r

∂Z

∂θ
= 0,

∂Z

∂t
+

∂U

∂r
+

U

r
+

1

r

∂V

∂θ
= 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.1)

After constructing an equation in favour of Z, a wave-like solution is found by
assuming Z ∼ R(r) exp i(mθ − Bωt), where ω is a dimensionless frequency scaled by
f . The fundamental solution is written in the form:

U = − A0

c2

B(ω2 − 1)

{
m

R(r)

r
− ωR′(r)

}
sin(mθ − Bωt − δ0),

V = A0

c2

B(ω2 − 1)

{
mω

R(r)

r
− R′(r)

}
cos(mθ − Bωt − δ0),

Z = A0R(r) cos(mθ − Bωt − δ0),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

where A0 is a wave amplitude, δ0 is an initial phase of the wave and R(r) is a radial
eigenfunction normalized by its maximum value, i.e. R(r) = R∗(r)/|R∗(r)|max, where
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R∗(r) is written in terms of the Bessel (J ) or the modified-Bessel (I ) function

R∗(r) =

{
Im(B∗r) if ω2 < 1,

Jm(B∗r) if ω2 > 1,
and B∗ =

B
c

√
|1 − ω2|, (3.3)

where Im(B∗r) is the Kelvin wave (subinertial) solution and Jm(B∗r) is the Poincaré
wave (superinertial) solution. The radial wavenumber is implicitly contained in B∗

through ω, which is an eigenfrequency determined by a dispersion relation, namely
for the Kelvin wave mode we have

B∗Im−1(B∗) − m

(
1 +

1

ω

)
Im(B∗) = 0. (3.4)

Since Im(r) is a positive, increasing function, (3.4) implies that the Kelvin wave can
possess only a single radial mode of positive frequency. We distinguish the wave
travelling direction by using ‘cyclonic’ (counter-clockwise) for positive frequency and
‘anti-cyclonic’ (clockwise) for negative frequency (here we suppose that the frame of
reference is set in the northern hemisphere). For ω2 > 1, Im is replaced by Jm in (3.4).
The dispersion relation then gives increasing frequencies in discrete radial modes
for both cyclonic and anti-cyclonic waves for given azimuthal mode (m) and Burger
number B.

Dispersion relations for the first three azimuthal and radial modes are plotted in
figure 1 as a function of the Burger number. For convention, we label the wave mode
by the format ‘M(azimuthal mode)R(radial mode)’. The dimensionless frequency ω =1
is a critical case between Kelvin and Poincaré wave modes, and the corresponding
solution is easily found by assuming (U, V, Z) ∼ exp(imθ − Bt) in (3.1), yielding

U = − A0

Bc

2(m + 1)
(rm+1 − rm−1) sin(mθ − Bct − δ0),

V = A0

Bc

2(m + 1)
(rm+1 + rm−1) cos(mθ − Bct − δ0),

Z = A0r
m cos(mθ − Bct − δ0),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

where Bc is a critical Burger number

Bc = c
√

m(m + 1), (3.6)

that is determined by requiring U = 0 at r = 1 when deriving (3.5). The Kelvin wave
solution exists only if B > Bc. It is easy to show that ω = −1 is physically irrelevant,
since the corresponding solution yields Z ∼ r−m, which is singular at r =0.

4. Numerical method
Since our evolution model derived in § 2 is described in terms of polar coordinates,

a numerical singularity is inevitable at r = 0, even though the solution is regular
(C∞) in the domain (Boyd 2001). We first attempted to integrate (2.19) through a
finite difference approach, but it failed to continue the integration for sufficiently long
time due to emergence of numerical instability on the computational grid adjacent
to r = 0. The numerical instability, in general, is caused by the inability of such a
low-order method to satisfy all necessary regularity conditions as r → 0. To remedy
this difficulty, we implemented the spectral method described here briefly.

Upon formulation of the spectral model, it is convenient (but not always necessary)
to use radial flux variables via the transformation r(U, V ) �−→ (Ũ , Ṽ ) instead of the



270 T. Sakai and L. G. Redekopp

original variables. We expand the dependent variables by a Fourier exponential in
the azimuthal direction and one-sided Jacobi polynomials (Matsushima & Marcus
1995; Verkley 1997) in the radial direction. After projecting the variables onto a finite
dimensional subspace, say {Ũ , Ṽ , Z} −→ {ŨN, Ṽ N , ZN}, we have that

ŨN =

N∑
m=−N

N+2∑
n=|m|, n�1

ûmn{Qmn(r) − δm0(−1)n/2Qmn(r)}eimθ ,

Ṽ N =

N∑
m=−N

N+2∑
n=|m|, n�1

v̂mn{Qmn(r) − δm0(−1)n/2Qmn(r)}eimθ ,

ZN =

N∑
m=−N

N∑
n=|m|

ẑmnQmn(r)e
imθ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where Qmn(r) is the one-sided Jacobi polynomial

Qmn(r) = r |m|P
(0,|m|)
k (2r2 − 1), n = |m| + 2k, k = 0, 1, 2 . . . , (4.2)

and P
(0,|m|)
k (x) is the Jacobi polynomial of order k. Also, Qmn(r) is an orthogonal

polynomial of degree n with weight function r , namely∫ 1

0

Qmn(r)Qmn′(r)r dr =
δnn′

2(n + 1)
. (4.3)

The one-sided Jacobi polynomial, by its nature, implicitly satisfies the regularity
condition at r = 0 for a scalar function (e.g. Z). However, the polynomial by itself
is not satisfactory to guarantee the regularity at r = 0 for vector functions. Vector
functions (Ũ , Ṽ ) that are regular at r = 0 dictate the use of a kinematic constraint
at r = 0, which is written here without derivation (see Sakai & Redekopp 2009a for
details):

N+2∑
n=|m|

(−1)k
(|m| + k)!

k!|m|! {ûmn + i sgn(m)v̂mn} = 0 for |m| � 1. (4.4)

Also, the boundary condition of vanishing normal velocity (Ũ = 0 at r =1) is expressed
in the spectral space as

N+2∑
n=|m|, n�1

{
1 − δm0(−1)n/2

}
ûmn = 0. (4.5)

Substituting (4.1) into (2.19), and after using (4.3), plus its counterpart in the
azimuthal direction, the equations are transformed to a system of first-order ODEs
in time in the spectral space. Nonlinear terms in the evolution equations are first
evaluated in physical space at Gauss–Legendre type collocation points in the radial
direction, and uniform collocation points in the azimuthal direction. Then, these
physical values are projected onto the spectral space via inverse transforms (Gaussian
quadrature in radial and fast Fourier transform in azimuthal directions). Resolution of
the collocation grid was chosen so that the spectral coefficients are evaluated exactly
without aliasing for a given truncation N . The system of ODEs, after combining
with (4.4) and (4.5), was integrated simultaneously in time by using the fourth-order
Runge–Kutta scheme of fixed time step size. The numerical scheme was validated
in our earlier work (Sakai & Redekopp 2009b) through comparisons of simulations
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Figure 3. (a) Modal forcing coefficient ks and (b) eigenspeed c as functions of vertical mode.

against the exact solution of the initial value problem for the linear hydrostatic model
described in § 3.

5. Preliminary considerations
5.1. Implications of environmental structure

We first investigate the evolution of initial values for a circular lake of uniform depth.
Vertical structure used in this study comprises an epilimnion of depth h1 (mixing
layer), a metalimnion of depth h2 having constant density gradient (thermoclinic
layer with constant Brunt–Väisälä frequency N0) and a hypolimnion of uniform
density, which we express by the formula,

N2(z) =
1

2

{
tanh

(
z + 1 + h2

δ

)
− tanh

(
z + 1

δ

)}
, (5.1)

after scaling all vertical lengths by h1 and N by N0. The parameter δ controls the
thickness of transition regions at the upper and lower ends of the metalimnion. For
all simulations discussed herein we use δ = 1/10 and consider a total depth of 5h1.

Before discussing simulations of different dynamic states we examine a couple of key
parameters appearing in equations (2.19). In figure 3 we present the magnitude of the
modal coefficient ks and the eigenspeed c as a function of the mode number for several
metalimnion depths. It is clear that the rate of energy deposition by wind forcing
into mode two, relative to that in mode one, is not strikingly disparate, particularly
as the thickness of the metalimnion increases. For short-time simulations, mode one
will clearly be dominant. However, the energy in mode two (and higher modes)
may become significant as time increases, and therewith induce significant inter-
modal nonlinear coupling. Also, the phase-speed separation between modes raises
some further concerns about the severe truncation to a two-layer approximation and
opens the possibility for locally enhanced nonlinear interaction after a couple inertial
periods.

The variation of the coefficients of the self-modal and cross-modal terms in (2.17)
with vertical structure parameters was evaluated in a different model by Sakai &
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Redekopp (2009b). Since the coupling coefficients denoted by β here are identical
with corresponding coefficients in that earlier work, we do not repeat those data here.

5.2. Multi-mode preliminaries

The numerical code was developed to simulate (2.17) for the nonlinear interaction
of the first two vertical modes, denoted in what follows by V1 and V2 for the first
and second vertical modes, respectively. It was noted in the early simulations that
instabilities invariably developed in which the growth rate increased with increasing
amplitude, or increasing applied wind stress, or for simulations with higher resolution,
or for cases where the environmental structure yielded coefficients of the nonlinear
coupling terms with larger magnitude. The observed instability was manifested in
spectral space as a continual flow of energy to higher wavenumbers (both azimuthal
and radial) in V2. This instability vanished when the V2 cross-modal coefficients were
set to zero.

Instabilities of this nature are not uncommon in simulations of inviscid dynamics,
and are usually circumvented by either of two approaches. First, a high-wavenumber
filtering is applied. Such an approach could be expected to yield similar advantages in
the present case, and permit stable, long-time simulations of the fully coupled, multi-
mode problem. However, a spectral filtering algorithm of that sort has not yet been
developed for schemes employing one-sided Jacobi polynomials in polar coordinates.
Alternatively, the addition of hyperviscosity terms, a technique used quite widely in
various contexts, would effectively damp the continuous (weak) flow of energy to
high wavenumbers. The downside of using hyperviscosity is that it requires a drastic
reduction in allowed time step relative to the inviscid simulations reported here.

With these considerations in view, we proceed to simulate the restricted case of a
single vertical mode, focusing on the role of the different physical parameters and
variable depth, on the nonlinear evolution of the dominant mode, V1 (viz. equations
(2.19)). The flow of energy from the basin scale to higher azimuthal and radial modes
of the basin is an issue of fundamental concern, and characterization of this flow in
the case of a single eigenmode of the vertical structure via a computational scheme
having full spectral accuracy is deemed an important base study in its own right.

Before proceeding to discuss the evolutionary characteristics of the V1 field, we first
explore some potential deficiencies implicit in restricting simulations to the severely
truncated model of a single vertical eigenmode. To this end, we present a set of
comparative results for a fixed set of parameters in figure 4 where different modal
amplitude fields are shown at three corresponding times. In obtaining these fields, a
unidirectional wind stress at fixed Wedderburn number was applied for a fixed time
interval of 0< t < 0.5 that corresponds to one-third of the inertial period with the
Burger number B = 4. The first two rows depict the isopycnal field obtained for the
first two modes of the uncoupled, linear hydrostatic system. Figure 4(a) depicts the V2
field and figure 4(b) depicts the corresponding field for V1. We then exhibit in figure
4(c) the V1 field obtained from a simulation of the fully nonlinear equation for the V1
field when coupled with V2, but the V2 field is obtained from the entirely linear model
for V2 (i.e. the V2 field as seen in figure 4a). That is, figure 4(c) provides snapshots of
the V1 field including both self-nonlinear and cross-nonlinear dynamics, but the V2
coupling with V1 entails only the linear, uncoupled evolution of V2. In figure 4(d )
we show the V1 field at corresponding times obtained from a nonlinear–dispersive
simulation of V1 in the absence of any V2 field, either linear or nonlinear. Lastly,
in figure 4(e), we show the difference field between the two V1 fields exhibited in
figures 4(c) and 4(d ). Hence, figure 4(e) depicts the ‘error’ in the restricted evolution
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(i) (ii) (iii)

(a)

(b)

(c)

(e)

(d)

Figure 4. Snapshots of isopycnal amplitude Z of wind-forced two-mode responses. Rows:
(a) V2 linear hydrostatic response, (b) V1 linear hydrostatic response, (c) V1 response (all
model terms are included), (d ) V1 self-nonlinear response and (e) difference between (c) and
(d ). Columns: (i) onset of wind stress (t = 0.52), (ii) t = 20 and (iii) t = 40. Contour level steps
are 0.02 for (a–d ) and 0.005 for (e). Grey areas represent negative values, otherwise values
are positive. Maximum amplitudes at time level (iii) t = 40 are (a) ±0.047, (b) ±0.141, (c)
−0.258, (d ) −0.279 and (e) 0.031. Physical configuration for the simulation is B = 4, W = 2.5,
Λ= 0.025, ns = 2, κw = 1/3 (see § 7 for definitions of ns and κw).

of V1 arising from neglect of any coupling between V1 and V2. Of course, all
coupling to higher vertical modes has also been suppressed. It is evident that the peak
amplitude error in the field arising from the restricted V1-alone simulation increases
slowly in time and is about 10% at t = 40, a time that corresponds to twenty-five
inertial periods. It is important to emphasize that such errors, which are associated
with local structures in the basin with quite different vertical eigenmode shapes,
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Figure 5. Evolution of the Kelvin wave (M1R1+). Snapshots of the isopycnal amplitude Z

(upper row) and the magnitude of the velocity amplitude
√

U 2 + V 2 (lower row) are taken at
(a) t = 0, (b) t = 8, (c) t = 16 and (d ) t = 24. Contour level step is 0.05 for all the plots. The
lowest contour level shown in the velocity contour plot is 0.05.

may in fact have important implications for horizontal transport in a basin. Studies
of transport, as explored by Stocker & Imberger (2003) for example, are reserved
for future consideration, preferably with an implemented high-wavenumber filtering
scheme so that full modal coupling is included.

6. Initial value problem
We consider the dynamical model of (2.19) with the environmental state described

by (5.1) with h2 = 1(= h1), δ = 1/10, and the depth of the hypolimnion h3 = 3 (i.e. total
depth 5h1). The vertical mode-one phase speed (c) is 0.9395 for this vertical structure
after numerically solving (2.10) using (5.1). The corresponding vertical eigenfunction
is normalized by its maximum value. Exact solutions to the linear hydrostatic model
described in § 3 are used as the initial conditions. Of course, such exact solutions are
not the solution of (2.19). However, at the initial stage of evolution where nonlinearity
is not significant, these solutions can serve as a reasonable approximation to the model
solutions.

6.1. Evolution of a Kelvin wave on uniform depth

In figure 5, we show a typical picture of the evolution of an azimuthal mode-one
Kelvin wave (M1R1+), where we chose B = 4, Λ = 0.025 and initial wave amplitude
A0 = −0.3, and we set the spectral resolution N = 70 and used an integration time step
�t = 0.0025. The negative side of the isopycnal amplitude (Z) propagates faster than
its positive side, creating a front which gradually steepens as it travels in the cyclonic
direction. (Here t =8 ≈ 1.4T∗, where T∗ is the linear wave period. By convention T∗
represents the period of either the linear Kelvin M1R1+ or Poincaré M1R1− wave
mode depending on which wave mode is discussed. In the present case T∗ is the period
of the linear Kelvin wave.) The steep front evolves and it generates a train of shorter
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Figure 6. Developed view of the Kelvin wavefront (isopycnal amplitude Z for B = 8,
A0 = −0.3, Λ= 0.025, t =18). The front position and its propagating direction are indicated
by an arrow.

waves (t =16 ≈ 2.7T∗), the leading front passes through its own oscillatory tail, and
then the field becomes more complicated generating even shorter length-scale waves
(t = 24 ≈ 4.1T∗). A width of a linear Kelvin wave lK can be defined in a similar way
to one used in the case of an infinite channel model,

lK =
R∗(r)

R′∗(r)

∣∣∣∣
r=1

= B∗−1 Im(B∗)

I ′
m(B∗)

. (6.1)

Since Im(x)/I ′
m(x) → 1 as x → ∞, then lK ∼ B∗−1 for large B∗ (= B/c

√
1 − ω2 ∼ B/c,

after noting ω � 1 for large B from figure 1). At the present Burger number, the
alongshore horizontal fluid motion (see the second row of figure 5) is confined near
the shore (lK =0.27), and it persists even after the oscillatory waves develop. The
steepening of the Kelvin wave is not a new result by itself. It has been demonstrated
by several authors by utilizing nonlinear models in either semi-infinite or infinite
domains. Bennett (1973) first demonstrated the steepening of Kelvin waves by
analysing a transversely geostrophic shallow water model. Tomasson & Melville
(1990) demonstrated a triad resonance of a periodic Kelvin wavetrain by using a
weakly nonlinear dispersive model, and at the same time their numerical simulation
showed steepening of Kelvin wavefronts. Fedorov & Melville (1995) demonstrated
steepening and subsequent breaking of Kelvin wavefronts by using a shallow water
model. Also, the steepening of Kelvin waves on the equatorial thermocline has been
studied by many authors (e.g. Boyd 1998; Fedorov & Melville 2000).

Regarding the steepening of Kelvin waves, Maxworthy (1983) produced a strongly
nonlinear solitary internal Kelvin wave of vertical mode two in his laboratory
tank, where it was clearly shown that the crest of the wave was curved backward
as it travelled along the sidewall. Melville, Tomasson & Renouard (1989) later
demonstrated the backward curvature of a solitary Kelvin wave by numerically
simulating a weakly nonlinear weakly dispersive model in a channel. Similar results
are also found in our model simulation as shown in figure 6, where Z is developed over
the r–θ plane for B = 8 at t = 18. Lines of constant phase (troughs) curve backward
relative to their travelling direction. The trough of the leading wave is less curved due
to the presence of the steep front, but troughs of following waves are clearly curved
backward. This curvature is due to the nonlinear effect on the wave phase speed (i.e.
waves of larger amplitude travel faster than those of smaller amplitude). In figure 7
the azimuthal location of the minimum value of Z is plotted as a function of time for
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Figure 7. Azimuthal location of the minimum value of the isopycnal amplitude Z (the
leading Kelvin wave trough) as a function of time.

different wave amplitudes, showing that the wave of larger amplitude travels faster.
Small jumps at t ≈ T∗ for A0 = −0.4 and at t ≈ 1.5T∗ for A0 = −0.2, indicated by
arrows in the figure, implicitly indicate the emergence of oscillatory waves, where the
minimum point of Z quickly shifts from the middle of the wave trough to the trough
of the leading oscillatory wave following the steepened front.

The rate of steepening of a Kelvin wave is a strong function of amplitude and
environmental parameters (i.e. the vertical structure, B and Λ). To quantify this, we
calculated the maximum azimuthal gradient of the Z field along the basin perimeter
for various sets of parameters. Figure 8(a) shows the gradient of the wavefront as
a function of time for different initial amplitudes for fixed B = 4 and Λ =0.025.
Calculated gradients are normalized by their initial values and amplitudes. The
figure exhibits that waves of larger amplitude steepen quickly, reaching a maximum
gradient, where the gradient does not increase any more owing to the balance
between nonlinear and dispersive effects. Dependence of the steepening rate on the
initial amplitude presented here is consistent with that in earlier work by Ripa (1982)
on the steepening of Kelvin waves on the equatorial β-plane and by Horn et al.
(2001) on one-dimensional (non-rotating) progressive waves. Figure 8(b) shows the
gradient of the wavefront as a function of time for various values of B for fixed
A0 = −0.3 and Λ = 0.025. Calculated gradients are normalized by their initial values.
The rate of steepening is significantly modified when B is relatively small (B < 2),
resulting in a slower steepening rate for smaller B. But the wave does not steepen
any more if B < Bc, where the wave becomes superinertial (Poincaré type), although
the propagation direction of the wave is still cyclonic, the same as that of a Kelvin
wave. For a small lake where the effect of the Earth’s rotation is negligible (i.e.
B → 0), the eigenfrequencies of both the cyclonic wave mode and the anti-cyclonic
counterpart become identical. When such a small lake is subject to uniform wind
stress, both rotating waves can be equally excited by the wind stress, resulting in
basin-scale standing waves oriented along a single (wind) direction in the absence of
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Figure 8. Time series of the maximum azimuthal gradient of the isopycnal amplitude Z
at r = 1 for: (a) different amplitudes A0 with fixed Burger number B = 4 and aspect ratio
Λ= 0.025; (b) different Burger numbers with fixed |A0| = 0.3 and Λ= 0.025; and (c) different
aspect ratios with fixed B = 4 and |A0| = 0.3.

transverse motions. Steepening of the internal seiche on a non-rotating frame is well
documented (e.g. Horn et al. 2001, 2002; Boegman, Ivey & Imberger 2005b; Sakai &
Redekopp 2010).

For larger B(>4), the steepening rate is very similar. In figure 9, we show snapshots
of the Z field at fixed time (t = 16) for different values of B along with their initial
conditions. At t = 16, the wavefront reached a near maximum slope, and the front
had already generated oscillatory waves on its tail. We also observe in the figure that
the wavelength of the oscillatory tail becomes shorter for larger B, and the radial
width of these waves becomes shorter for larger B (lK ∼ c/B). Figure 8(c) shows the
gradient of the wavefront as a function of time for different Λ for fixed A0 = −0.3
and B = 4. In the figure the gradients are all multiplied by their respective Λ(= h1/r0)
to show the actual (non-scaled) values. As seen in (2.19a, b), Λ2 scales the dispersive
terms. For small Λ, the dispersive effect becomes very small and the evolution model
becomes more like a non-dispersive shallow water model where the wavefront evolves
to a shock. The rate of steepening becomes greater, and it reaches a larger maximum
for smaller Λ. For Λ = 0.01, the gradient became so steep for the present spectral
resolution that the numerical integration was terminated at t ≈ 2 due to emergence of
Gibb’s phenomenon. In figure 10 we show snapshots of the Z field at t =17.5 (≈3T∗)
for different values of Λ. It can be seen that the smaller Λ (shallower lake) generates
an oscillatory tail of shorter wavelength. An alternative view of the snapshots in



278 T. Sakai and L. G. Redekopp

0

0

+

(a) (b) (c)

0
0

0

0

+

+

+ – – –

–
–

–

0

0

0

0

0
+

+

0

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

+

+

Figure 9. Comparison of the isopycnal amplitude Z for different Burger numbers (a) B = 2,
(b) B = 4 and (c) B = 8 at t = 0 (upper row) and t = 16 (lower row). Contour level step is 0.05.

+

+
0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0
0

+

+0

0

0

0
+

+ – – –

0

(a) (b) (c)

Figure 10. Comparison of the isopycnal amplitude Z for different aspect ratios (a) Λ= 0.04,
(b) Λ= 0.03 and (c) Λ= 0.02 at t = 17.5. B = 4 and contour level step is 0.05.

figure 10 is obtained by noting that the product of the two dimensionless parameters
B and Λ yields the frequency ratio f/N0. Hence, the sequence of snapshots in
figure 10 correspond to increasing values of the Brunt–Väisälä frequency at fixed
latitude and fixed basin size.

Steepening of the wavefront and its subsequent generation of oscillatory waves
implies nonlinear energy transfer from basin scale to smaller scales of fluid motion. A
spectral method is very advantageous for quantifying the energy contained in each of
the discrete wavenumbers. In figure 11 a horizontal wavenumber spectrum is shown
of the vertically integrated potential energy at t = 12 (≈2T∗) for different amplitudes
for B = 4 and Λ =0.025, along with the corresponding snapshots of the Z field. The
spectral energy density is normalized by the total potential energy, and the horizontal
wavenumber field is a discrete set of Fourier azimuthal modes (m) and radial
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Figure 11. Comparison of potential energy spectrum of the Kelvin wave (M1R1+) at t = 12
for different initial amplitudes (a) A0 = −0.2, (b) A0 = −0.3 and (c) A0 = −0.4 along with the
corresponding isopycnal amplitude Z.

one-sided Jacobi polynomial modes (n) within the spectral truncation N =70. For
clarity, the definition of the field energy density is

E ≡ 1

2
{u2 + v2 + w2} +

1

2

σ 2

N2
, (6.2)

where the first bracketed term corresponds to kinetic energy and the second
corresponds to potential energy. Although the potential energy term is expressed
by an infinite series of higher-order terms (e.g. see Gerkema 2003), they are less
significant and hence we truncated them in this study. For a single vertical mode and
uniform depth, (6.2) is expressed after scaling as

E ≡ 1

2

{
(U 2 + V 2)φ′2(z) + Λ2

(
∂U

∂r
+

U

r
+

1

r

∂V

∂θ

)2

φ2(z)

}
+

1

2
Z2φ2(z). (6.3)

The kinetic energy of the vertical component of velocity can be also neglected noting
w/v ∼ Λ � 1, but we retained it here. Initially, all the energy is concentrated in
azimuthal mode one. In the linear model, the energy is contained in azimuthal mode
one at all times, which was confirmed in our numerical code by turning off all the
nonlinear terms. For A0 = −0.2, the front is not quite steepened at t = 12 and most of
the energy is still contained in m =1. For larger amplitudes, the wavefront becomes
steeper entailing oscillatory waves, and then more energy is found in higher modes.
In figure 12, we present a total energy spectrum as a function of azimuthal mode for
several different times for B = 4, Λ = 0.025 and A0 = −0.3. Spectral convergence is
readily observed from the whole energy spectrum (figure 12a). Looking at the enlarged
plot (figure 12b), the energy in higher modes increases in time, and the energy in
m = 1 decreases in exchange. At t = 16 (≈2.7T∗), a spectral energy peak emerges at
m = 8, which corresponds to the azimuthal wavenumber of oscillatory waves. At
t = 20 (≈3.4T∗), the oscillatory wave gains more energy, being slightly stretched due
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initial amplitudes A0 with fixed Burger number B = 4 and (b) different Burger numbers with
fixed amplitude A0 = −0.3.

to dispersion. Figure 13(a) shows the total energy spectrum at t =20 for different
initial amplitudes. Again, more energy is found in higher modes at the expense of
energy in m = 1 for larger amplitude. For A0 = −0.2 at t = 20, the oscillatory tail is
still undeveloped, but for larger amplitudes the oscillatory tail is already developed
and a spectral energy peak appears at m =7. Figure 13(b) shows the similar azimuthal
energy spectrum at t = 20 for different values of B for A0 = −0.3. With this amplitude,
the oscillatory tail is already developed at t = 20. The figure indicates that the spectral
energy peak appears in higher azimuthal modes for larger B, which is qualitatively
consistent with the observation of figure 9.

Recently, the internal wave evolution in a circular basin of uniform depth was
studied in laboratory experiments (Wake, Gula & Ivey 2004, 2005). However, the
nonlinear steepening was not observed in their experiments. The vertical structure
was a two-layer configuration, and for most of the experimental runs the upper
and lower layer depths were set equal. In such a case, the coefficient of the leading
nonlinear term β (u,v) is identically zero, which can greatly reduce the chance of
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observing nonlinear effects. Also, the larger dissipation common in laboratory tanks
possibly damps the fluid motion before the nonlinear steepening becomes significant.

Earlier studies of the evolutionary dynamics described by the KdV equation on
the periodic interval revealed the phenomenon of recurrence (cf. Zabusky & Kruskal
1965). The weakly nonlinear limit of the problem defined by (2.1), applied to motion in
a narrow straight channel when the Rossby radius is small, is also reducible to a KdV
equation (Grimshaw 1985; Melville et al. 1989) for evolution along the channel. With
these facts in view, and noting that the circular lake necessarily involves evolution in a
periodic domain (azimuthally), we investigated the potential for reconstruction of the
Kelvin wave initial condition for different Burger numbers at fixed initial amplitude,
aspect ratio and environmental density structure.

In the circular lake case, where evolution for a single vertical mode occurs in
the plane of a disc, energy can flow between both azimuthal and radial modes and
the potential for recurrence is fundamentally altered. Nevertheless, there remains a
potential for at least a ‘partial’ (i.e. qualitative) recurrence at low Burger numbers
where the Kelvin wave dispersion restricts the flow to higher radial modes. In figure 14
we depict in azimuthal wavenumber space the evolution of an M1R1 Kelvin wave
initial condition at several Burger numbers. Both the energy spectrum at the time when
initial steepening and generation of oscillatory waves occur, plus the corresponding
spectrum at a subsequent time when the energy in the lowest azimuthal mode achieves
its first maximum (i.e. the earliest form of a ‘reconstruction’ occurs), are shown. At the
lowest Burger number chosen (B = Bc =

√
2c), the linear dispersion relation allows

only the lowest radial mode. At higher Burger numbers, successive radial modes are
accessible to the linear system (e.g. see figure 9c; the dispersive tail spreads farther
into the interior than the primary Kelvin wavefront). It is clear from figure 14 that
a near recurrence occurs for the lowest Burger number, but that any semblance of
a recurrence is quickly lost due to an apparent irreversible flow of energy to higher
radial modes at higher Burger numbers.
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6.2. Evolution of Poincaré wave on uniform depth

For the next initial value problem, we choose a Poincaré wave of azimuthal mode
one and radial mode one (M1R1–). A typical portrait of Poincaré wave evolution
obtained by numerical simulation is shown in figure 15 for B = 4, Λ = 0.025 and
A0 = −0.3. The initial condition is symmetric, but the field quickly loses its symmetry
as it evolves. The asymmetric field subsequently tends to return to a near symmetric
field, and this repeats aperiodically. If the model is linear hydrostatic, the field is
symmetric permanently, rotating in an anti-cyclonic direction with constant speed
without changing shape. Contrary to the Kelvin wave, the fluid velocity is the largest
at r = 0 for Poincaré waves. Looking at the lower row of figure 15, contours of the
magnitude of the velocity are symmetric having their maximum at r = 0 initially,
but the velocity contours become eccentric having their maximum off the basin
centre as the wave evolves. It can be also observed from the figure that the isopycnal
amplitude is larger on the side where the maximum velocity is found. This asymmetric
modulation of wave amplitude persists for the rest of the evolution (see t = 24 ≈ 17.5T∗
in figure 15), and there is no sign of the wavefront steepening which was observed
in Kelvin wave evolutions studied earlier in this section. Although the result is not
shown here, we simulated this case with much smaller Λ (= 0.001), but both results
were indistinguishable. This is because the non-hydrostatic term is effective only when
the field gradient is large, which is not the case for the Poincaré wave evolution. In
figure 16, we plot the maximum and minimum values of Z as functions of time
for different initial amplitudes. The amplitude modulation is aperiodic and biased
asymmetrically on the negative side, and the amount of modulation becomes larger
for a larger initial amplitude.

Figure 17(a, b) shows the normalized potential energy spectrum of the field at
t = 4 ≈ 3T∗ for different amplitudes, along with snapshots of the Z field. Although
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time t = 20 along with the corresponding isopycnal amplitude Z.

the actual spectral resolution is N =70, the energy spectrum is truncated to N =30
because of insignificant energy in higher modes. Energy is concentrated in m = 1, and
it spreads over higher radial modes rather than higher azimuthal modes, implying
faster spectral convergence in azimuthal modes. More energy spreads over higher
radial and azimuthal modes for larger initial amplitude (A0 = −0.4), and the field
becomes more asymmetric. In figure 17(c), we also show the case at t =20 ≈ 14.5T∗



284 T. Sakai and L. G. Redekopp

(a)
0

0

0+ –

– –

– –

(b)

+

0

0

0

(c)

+

0

0

0

(d)

+

0

0

0

(e)

+

0

0

0

Figure 18. Pseudo recurrence of a Poincaré-type wave (M1R1+ with the Burger number
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for A0 = −0.3 to indicate that a similar modal energy structure persists even after a
long time.

The amplitude modulation is also observed for cyclonic superinertial wave modes
(Poincaré type). Figure 18 shows evolution of the isopycnal amplitude starting with
the M1R1+ initial condition for B = 1/2 (<Bc). The field is symmetric initially,
but the amplitude in the negative side increases and the amplitude in the positive
side decreases (t =8 ≈ 2T∗) as the wave evolves. Later, the asymmetry returns very
nearly to the symmetry of the initial condition (t =16 ≈ 4T∗), and this is repeated
approximately every 4T∗. The recurrence of the initial condition has been found in
the integrable KdV model under periodic boundary conditions (Zabusky & Kruskal
1965). The KdV evolution involves steepening and generation of solitary waves which
have amplitude-dependent phase speeds. The recurrence is achieved when all the
soliton’s phases become very close. However, the pseudo recurrence character found
in the Poincaré wave presented above is of a different type because of the absence of
front steepening and subsequent generation of solitary-like waves.

For Kelvin waves, fluid advection is confined near the boundary and the velocity
vectors are oriented in the propagation direction. Hence, the steepening of the
wavefront can be directly driven by this ‘obstacle-free’ alongshore current similar
to one-dimensional (non-rotating) progressive waves. For Poincaré waves, on the
other hand, basin-scale fluid advection is pronounced at the centre of the basin,
and the velocity vectors are perpendicular to both the boundary and the wave
propagating direction (i.e. the field advection and the wave vector are ‘out-of-phase’).
It is conjectured that such an out-of-phase feature of the Poincaré eigenstructure
possibly impedes the progressive nonlinear steepening of the dominant flow, and
that nonlinearly-accelerated flow bounces within the confined basin, breaking the
symmetry of the flow structure that is oscillatory in time.
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Figure 19. Snapshots of the isopycnal amplitudes Z of the Kelvin waves at t =8 (upper
contour panels) and at t = 16 (lower contour panels) for different depth profiles. The depth
profiles are depicted on the top of each column.

6.3. Evolution on variable depth

We now briefly examine the effects of variable depth. We fix the metalimnion depth
at the value used in the previous section (h2 = 1), and perturb the depth of the
hypolimnion from the base depth h3 = 3. We consider two simple model topography
profiles: (i) a slanted bottom surface

hb = 1 + h2 + h3 + �hr cos θ, (6.4)

and (ii) a symmetric parabolic bottom surface

hb = 1 + h2 + h3 − �hr2, (6.5)

where �h is in each case a depth perturbation scaled by h1. These depth functions
are regular at r = 0. Vertical structure profile (5.1), which is independent of h3, holds
over the whole domain.

We first consider evolution of Kelvin waves in an environment described by (6.4) and
(6.5). In figure 19, snapshots of isopycnal amplitude at two different times are tabulated
for a slanted bottom with �h= 1 and a parabolic bottom with �h= 1. Included in
figure 19 are results for constant depth cases h3 = 3 and h3 = 2 for comparison. The
Burger number and the aspect ratio were set at B = 4 and Λ = 0.025, respectively, and
resolution of the numerical integration was set with N = 70 and �t = 0.0025. For all
the cases in the figure, the system was integrated from the common initial condition,
which is a linear hydrostatic Kelvin wave solution for h3 = 3 (uniform depth) with the
initial amplitude A0 = −0.3 (see figure 5 at t = 0). The field evolution for the slanted
basin appears nearly the same as the original case of constant depth. However, the
parabolic basin exhibits a slower phase speed and slower steepening than the original
flat basin. The evolution in the parabolic basin rather resembles the one for the
constant depth case h3 = 2, the same depth as at the basin perimeter in the parabolic
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basin. The slow phase speed primarily resulted from the fact that the linear phase
speed is smaller for shallower depth (i.e. c =0.9395 at h3 = 3 and c =0.8763 at h3 = 2,
and note that the wave frequency is scaled by c for given B as implied in figure 1).

Figure 20 shows the maximum azimuthal slope of the isopycnal amplitude at the
basin perimeter as a function of time for different values of depth perturbation in
both the slanted and parabolic basin configurations. For the slanted basin, the slope
fluctuates as the wave travels over the variable depth cyclonically. The fluctuation
becomes greater for larger depth perturbation, but it is not relatively significant
for the present amount of perturbation. On the contrary, the rate of steepening is
significantly affected by the depth at the basin perimeter in the parabolic basin.
In the same figure, it can be seen that the rate of steepening for �h= 1 and the
uniform depth of hb = 4 for the parabolic basin are very similar. Similar to the phase
speed argument above, the coefficients of primary nonlinear terms in (2.19a, b) are
β (u,v) = −0.3691 at h3 = 3 and β (u,v) = −0.2594 at h2 = 2, implying less nonlinearity
for smaller depth, and consequent slower growth of the wavefront near the basin
perimeter where much of field kinetic energy is confined. For the slanted basin, the
environmental coefficients vary sinusoidally centred at values at average depth along
with the perimeter. This is why similar evolution pictures to those of the original flat
basin appear in the case of the slanted basin.

The field evolution of the lowest Poincaré waves (M1R1–) in basins of variable
depth established above is considered for the rest of this section. Both physical
and numerical parameter configurations are the same as those for the Kelvin wave
case noted above, although the Poincaré wave simulation requires less numerical
resolution due to lack of progressive front steepening. Figure 21 shows snapshots of
the isopycnal amplitude at different times for the slanted basin of �h= 1, along with
those for the original flat basin. These snapshots are selected in such a way that either
the negative side of Z shoals (t = 2.7 and t = 4.1) or the positive side of Z shoals
(t = 3.4). Although the wave phases are nearly the same for the slanted and flat basin,
their amplitudes are different. We also present on the third column in figure 21 the
normalized difference of isopycnal amplitudes between those of the slanted (Z2) and
flat basin (Z1), i.e. (Z2 − Z1)/|A0|. It can be seen from the figure that the amplitude
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Figure 21. Comparison of the isopycnal amplitudes for the uniform depth case (Z1) and the
slanted depth case (Z2) at (a) t = 2.7 (1.96T∗), (b) t =3.4 (2.47T∗) and (c) t =4.1 (2.98T∗), where
T∗ is the period of the linear Kelvin wave with a constant depth h3 = 3 (case a). The contour
level step for these plots is set to be 0.05. On the right-hand column the difference of Z1 and
Z2 scaled by the initial amplitude |A0| is plotted with a contour level step 0.02.

of the wave increases as the wave shoals, and the amplitude decreases as the wave
travels into the deep side of the basin.

We measured the maximum and minimum values of Z as functions of time for
the slanted and flat basin and plotted the values in figure 22. The figure implies that
the nonlinear amplitude modulation is dominant over the modulation induced by the
variable depth. The modulation of amplitude for variable depth is about 10 % of the
original amplitude (see also the case for the linear variable depth model in figure
22), but the nonlinear modulation corresponds to 35 %. In contrast to Kelvin waves,
the kinetic energy density is concentrated at the basin centre in Poincaré wave fields.
Hence, it is naturally expected that the depth change confined toward the basin
perimeter affects Poincaré field evolution only slightly. To demonstrate this, a time
series of the extremal values of the isopycnal amplitude for the parabolic basin with
�h= 1 are also included in figure 22. It is evident from the figure that the extremal
values obtained in the parabolic basin are close to those obtained in the flat basin.
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The time t is scaled by T∗, the period of the linear Poincaré wave with a constant depth
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7. Wind-forced evolution
We apply our evolution model to the wind-forced problem, where multiple

horizontal wave modes can be excited and they coexist with, or may even generate,
other modes via nonlinear interaction. We limit our study to a lake of uniform depth
which is subject to wind-forcing of finite duration. Uniform wind stress over the basin
surface is ideal as a fundamental model, but it is not suited to the spectral model due
to the fact that such a stress function is discontinuous at the basin perimeter, which
can immediately destroy the spectral convergence of numerical solutions. Instead,
we use a radially symmetric stress directed along the x(horizontal)-axis written by a
simple formula

τ h =
ns + 1

ns

(1 − r2ns ){1 − us(t − t0)}ex, (7.1)

where us(t) is the Heaviside step function, t0 is wind-forcing duration and
ex = cos θer − sin θeθ . This stress starts from a maximum value at the basin centre
and decreases to zero toward the perimeter. The average of the stress over the surface
is unity, and the magnitude of the stress is controlled by the Wedderburn number
W. The parameter ns in (7.1) is an integer parameter to control the stress shape:
ns = 1 gives a parabolic distribution, and increasing ns decreases the stress at the
basin centre while increasing the stress near the perimeter making the distribution
close to uniform (|τ h| → 1 as ns → ∞). It is clear from (7.1) that the wind energy is
injected only through azimuthal mode one. It is also important to note that (7.1) is a
regular function at r = 0. The wind-forcing duration t0 is parameterized by a fraction
κw of the inertial period Ti , i.e.

t0 = κwTi = κw

2π

B . (7.2)
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Physical and numerical parameters are set to hb = 5 (h2 = h1 = 1 and h3 = 3), Λ = 0.001,
N = 31 and �t =0.005, unless otherwise noted.

We computed the volume integral of the total energy density as a function of time
for different Wedderburn numbers for B = 4, ns = 1 and t0 = Ti/3, and show results
in figure 23(a). The field energy increases until the wind is turned off, and the energy
then stays approximately constant for the rest of the evolution due to the absence of
friction damping in the model. The total energy is not necessarily an exact constant,
however, because we used the truncated expression (6.3). Figure 24 shows the total
energy at t = t0 as a function of the Wedderburn number for different values of B and
ns . The total energy is proportional to W−2 regardless of the stress shape and Burger
number. We also show in figure 23(b) the integral of kinetic energy (EK ) and potential
energy (EP ) over the basin volume as functions of time for W = 2. Oscillatory energy
exchange between EP and EK is clearly observed, which readily suggests that multiple
wave modes coexist in the wind excited field. For a specific wave mode in the linear
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hydrostatic model, one can easily show from (3.2) that EP and EK are independent of
time for a given amplitude (a wave of permanent form and frequency rotates around
a basin centre). If multiple wave modes coexist in the wave field an energy exchange
between EP and EK can occur, primarily because frequencies of all the wave modes
are distinct. Hence, in a real wave field, computing energy partitioning between EP

and EK is meaningful only in a time average sense.
In figure 25(a), we show the energy partition between EP and EK as a function of

Burger number for t0 = Ti/3. Each energy is averaged in an interval of the longest
wave period for the given Burger number (i.e. Kelvin wave period), after the wind
is turned off. The computed energy partition ranges within ±10 % compared to the
value averaged in three Kelvin wave periods. We also include in the figure the energy
ratio for linear hydrostatic Kelvin (M1R1+) and the gravest Poincaré (M1R1−)
waves. Energy partition shows a preference for kinetic energy for the Poincaré wave
mode, especially for larger B. In figure 25(b), we also show the energy partition
as a function of Wedderburn number for different Burger numbers, along with the
value obtained from the linear hydrostatic model. It can be seen from the figure that
the dependence of Wedderburn number on the energy partition is very weak. This
suggests that the linear hydrostatic model can serve as a good tool for estimating
energetics, at least in the initial stage of free evolution. Wind-forced response of a
linear hydrostatic, circular basin has been well documented (Csanady 1968, 1972;
Stocker & Imberger 2003). Referring to these works, an analytical solution to the
linear hydrostatic model subject to uniform wind stress can be obtained by a Laplace
transform approach, and the final result is written in terms of our scaled variables as:

U =
ks

W

∞∑
n=1

An

B
(
1 − ω2

1n

) {
ω1nR′

1n(r) − R1n(r)

r

}
cos(θ − Bω1nt + ∆0),

V =
ks

W

∞∑
n=1

An

B
(
1 − ω2

1n

) {
R′

1n(r) − ω1n

R1n(r)

r

}
sin(θ − Bω1nt + ∆0),

Z =
ks

c2W

∞∑
n=1

AnR1n(r) sin(θ − Bω1nt + ∆0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.3)
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where R1n is a normalized modal eigenfunction of azimuthal mode one and nth radial
mode with corresponding eigenfrequency ω1n, phase shift ∆0 = Bω1nt0/2, and An is a
radial modal amplitude given by

An = 2
ω1n − 1

1 + ω1n − (B/c)2ω3
1n

sin

(
Bω1nt0

2

)
|R∗

1n(r)|max

R∗
1n(1)

. (7.4)

Note that (7.3) is a solution for post wind-forcing (t � t0), hence the
geostrophic (steady) solution is cancelled in the expression. From (7.3), all field
variables are proportional to ksW−1. This implies that the total energy is proportional
to W−2, which is consistent with our numerical result presented in figure 24.

The field response for the linear hydrostatic basin subject to uniform wind stress
is constructed by an infinite family of radial modes for azimuthal mode-one waves.
Equation (7.4) implies that the magnitude of each modal amplitude ranges from zero
to its maximum value every Ti/2ω1n. It can be shown through use of (7.4) that unless
the wind blows for too long (t0 < Ti), the dominant wave modes are a Kelvin wave
(M1R1+) having the largest amplitude and the gravest Poincaré wave (M1R1−). Once
initiated by the wind-forcing, these modal amplitudes are invariant for the rest of the
response. In a nonlinear counterpart, although the wind energy is introduced only via
azimuthal mode one, the energy can spread over other azimuthal and radial modes
via nonlinear interaction. In figure 26(a), we show a frequency power spectrum of the
isopycnal amplitude sampled at (r, θ) = (1, 0) for B = 4 and W = 3.5. The sampling
interval is 0 � t � 50, which corresponds to eight and one-half Kelvin wave periods.
At this Wedderburn number, the isopycnal amplitude is relatively small (∼ 0.12), and
the steepening of the Kelvin wave becomes noticeable only after about t = 40. We
did not sample the signal beyond t =50 due to insufficient numerical resolution to
resolve the steepened front. In the figure, frequencies of the first three azimuthal
and the first two radial wave modes determined from the linear hydrostatic model
are indicated. The spectral peaks agree with these frequencies very well. The Kelvin
wave and the gravest Poincaré modes are still dominant modes even in the long time
interval. A similar trend was also found for different Burger numbers and sampling
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points, although these results are not shown here. We also simulated the same case
under the linear hydrostatic configuration having all nonlinear and non-hydrostatic
terms turned off in our numerical code. The corresponding frequency spectrum is
shown in figure 26(b). The spectral density has peaks at only azimuthal mode-one
waves, which implies there is no energy leakage to other azimuthal modes in the
numerical code.

Unless a model is linear hydrostatic, it is not a straightforward task to determine
the energy contained in a given wave mode. Motivated by the above results that the
Kelvin and gravest Poincaré modes are dominant, we address the energy partition
between these dominant modes. In a linear hydrostatic sense, we try to estimate
roughly the energy partition from our results obtained by numerical simulation.
Assuming the post wind-forcing field is dominated by two wave modes, we write the
field solution as a linear superposition of the modes

U =

2∑
n=1

AnPn(r) cos(θ − Bωnt − δn),

V =

2∑
n=1

AnQn(r) sin(θ − Bωnt − δn),

Z =

2∑
n=1

AnRn(r) sin(θ − Bωnt − δn),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.5)

where indices n= 1 and n= 2 represent the Kelvin wave and Poincaré wave mode,
respectively. Radial structure functions of the velocities Pn(r) and Qn(r) are defined
after (3.2) with m =1, so that

Pn(r) = − c2

B
(
1 − ω2

n

) {
Rn(r)

r
− ωnR′

n(r)

}
,

Qn(r) =
c2

B
(
1 − ω2

n

) {
ωn

Rn(r)

r
− R′

n(r)

}
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.6)

The volume integral of the potential energy is computed as

EP =
1

2

∫ 0

−H

∫ 2π

0

∫ 1

0

N2(z)φ2(z)Z2(r, θ, t)r dr dθ dz

=
π

2
I

{
A2

1

∫ 1

0

R2
1r dr + A2

2

∫ 1

0

R2
2r dr

+ 2A1A2 cos(B(ω2 − ω1)t + δ2 − δ1)

∫ 1

0

R1R2r dr

}
. (7.7)

The last term in (7.7) is a time fluctuating part of the EP owing to distinct frequencies
of the wave modes. Looking at figure 23(b), the primary period of the energy
oscillation is measured to be 1.2. Using eigenfrequencies for Kelvin (ω1 = 0.268)
and Poincaré (ω2 = −1.14) modes for B = 4, the oscillation period is computed to
be 1.12, which is close to the measured value. Figure 23(b) shows a modulation of
the amplitude of the energy oscillation, possibly to contributions from higher wave
modes that are not accounted in this two-mode truncation. Taking the time average
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of (7.7), the energy fluctuation term vanishes leaving

〈EP 〉 =
π

2
I

{
A2

1

∫ 1

0

R2
1r dr + A2

2

∫ 1

0

R2
2r dr

}
. (7.8)

Carrying out the same procedure for the kinetic energy counterpart yields

〈EK〉 =
π

2

I

c2

{
A2

1

∫ 1

0

(
P2

1 + Q2
2

)
r dr + A2

2

∫ 1

0

(
P2

2 + Q2
2

)
r dr

}
. (7.9)

From (7.8) and (7.9), solving for A2
1 and A2

2 yields the amplitude ratio

A2

A1

=

√
−γµ1 + σ1

γµ2 − σ2

, (7.10)

where γ is a ratio of potential to kinetic energy, and σn and µn are the radial modal
energy densities of potential and kinetic energy:

γ =
〈EP 〉
〈EK〉 , σn =

π

2
I

∫ 1

0

R2
nr dr and µn =

π

2

I

c2

∫ 1

0

(
P2

n + Q2
n

)
r dr. (7.11)

The quantity γ is readily estimated from numerical simulation, and σn and µn are
also readily computed using the eigenfunctions. After computing the amplitude ratio
by (7.10), the modal energy ratio 〈E2〉/〈E1〉 is computed

〈E2〉
〈E1〉 =

σ2 + µ2

σ1 + µ1

(
A2

A1

)2

. (7.12)

The amplitude and energy ratios of Kelvin and Poincaré waves as functions of B,
after using the potential to kinetic energy ratio estimated previously in figure 25(a),
are shown in figure 27. Corresponding results for the linear forced problem (LFP)
described by (7.3) and (7.4) are included in figure 27. For larger ns (wind stress
approaches a uniform distribution), the amplitude as well as energy ratios get close to
those of LFP. However, the amplitude ratio deviates substantially from that of LFP for
smaller B. Contrary to the uniform wind, the curl of a non-uniform stress (our case)
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does not vanish, and a non-zero curl of the stress generates relative vorticity during
the wind-forcing (Schwab & Beletsky 2003; Shimizu & Imberger 2007). This implies
that the relative vorticity serves as an inhomogeneous term in the radial eigenfunction
equation (Bessel’s equation), modifying the eigenfunction by necessitating particular
solutions in addition to the free modal (Bessel) solutions. The wind-generated vorticity
(i.e. particular solution) remains even after the wind is turned off to conserve the total
vorticity in the system. Recalling our definition of the forcing duration t0 in (7.2), t0
increases in proportion to B−1. With these issues in mind, we believe that the long-
time, wind-generated relative vorticity field becomes significant compared to Kelvin
or Poincaré wave modes, which can consequently render (7.10) and (7.12) invalid,
since (7.10) and (7.12) are based on a simple assumption that admits only Kelvin and
Poincaré wave modes in the field. We first wondered whether the ratio discrepancy
for small B might be caused by the nonlinearity, but we discarded the possibility
after we obtained nearly the same results (e.g. see figure 25b) by running the code for
the linear hydrostatic configuration.

From (7.10), requiring the term inside the square root to be positive, we have the
constraints that

σ2

µ2

< γ <
σ1

µ1

or
σ1

µ1

< γ <
σ2

µ2

. (7.13)

These constraints imply that the gross potential-to-kinetic energy ratio must be within
a range between those of Kelvin and Poincaré waves. But, as seen in figure 25(a), γ is
outside the range for small B. This discrepancy most likely derives from the non-zero
curl of the wind stress as discussed above.

From figure 27(b), the Poincaré wave energy is pronounced for larger B (>2),
although the Kelvin wave has a larger amplitude as seen in figure 27(a). This
is because, for large B, the frequency of the Poincaré wave approaches −1, which
causes horizontal velocities to become pronounced via the relation (U, V ) ∝ (1−ω2)−1

as described in (3.2) and (7.3); also the Kelvin wave becomes more localized to the
basin perimeter (lK ∼ c/B). For ns =1 (parabolic stress shape), the stress is biased
at the basin centre, favouring energy input in Poincaré waves over the Kelvin wave,
whose energy is confined near the basin perimeter.

8. Conclusions
A weakly nonlinear weakly dispersive wind-forced variable environmental evolution

model is derived for a continuously stratified circular basin. The model was
numerically simulated with the vertical modes in the field restricted to include only
the lowest vertical mode. We investigated first the field evolution starting from initial
conditions corresponding to hydrodynamically balanced linear Kelvin and Poincaré
waves in a basin of both uniform and perturbed depth. Then we investigated the wind-
forced response, and evaluated our simulation results employing the linear hydrostatic
model with an emphasis on energetically dominant Kelvin and Poincaré waves.

Although the linear theory gives a set of wave solutions of permanent form and
speed, our simulation exhibited that those linear solutions are not preserved in
the nonlinear evolution. The Kelvin wave steepens as it travels, and the steepened
front generates oscillatory waves owing to a balance between weak nonlinearity and
non-hydrostatic effects. Through this nonlinear effect, the field energy is transferred
from basin scale to sub-basin scales. The rate of steepening is a strong function
of the wave amplitude, Burger number, vertical structure, depth-to-horizontal scale
ratio and typical depth within a Rossby radius along the basin perimeter. The field
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kinetic energy is still confined near the basin perimeter even after the development
of oscillatory waves. Energy transfer from Kelvin to Poincaré wave modes is thus
insignificant.

On the other hand, Poincaré wave evolution does not exhibit such a hyperbolic
character as observed in Kelvin wave evolution. The amplitude of a Poincaré wave is
modulated, losing its symmetry and later returning to ‘near’ symmetry as it evolves,
exhibiting a pseudo recurrence character. The amplitude modulation is a strong
function of the initial wave amplitude, and the depth at the basin centre. The energy
is contained primarily in azimuthal mode one with preference for rather higher radial
modes. This structure of the modal energy is persistent for longer evolution times
following the initial adjustment. The field kinetic energy is offshore-biased at all times,
with minor deviation from symmetry. Similar to Kelvin wave evolution, there is no
significant energy transfer from the Poincaré to the Kelvin wave mode.

The aforementioned evolution trends of the Kelvin and the Poincaré waves are
very similar to results presented in a recent work by de la Fuente et al. (2008) using
a two-layer, shallow water model with weak non-hydrostatic effect in a circular lake
of uniform depth. Our results are based on a rationally derived asymptotic model for
arbitrary stratification in the polar coordinates, which preserves geometric symmetry,
and the model simulations were carried out through a novel scheme possessing full
spectral accuracy.

Uniform or near-uniform wind stress excites Kelvin and Poincaré wave modes
predominantly. If the forcing is not too strong, the linear theory can still be an
effective tool to estimate the initial energy resident in these dominant modes. Also, the
frequency information obtained from the linear dispersion relation is quite useful to
diagnose the internal wave spectrum in the frequency space. After a single wind-forcing
event, the amplitude of the Kelvin wave is greater than the Poincaré counterpart. This
is quite misleading, however, because the total energy of the Kelvin wave becomes
much less than that of the Poincaré wave, especially for large lakes, or perhaps
for lakes with weak stratification. Considering the field evolution character of these
waves, energy dissipation is expected to be greatly dependent on the lake dimension
and the stratification (Burger number). In large lakes for example, the shore-confined
post-steepened oscillatory Kelvin waves can shoal and eventually break as they pass
through three-dimensional irregular bathymetry, enhancing mixing at the shore and
radiating near-buoyancy-frequency short internal waves off the shore. Poincaré waves
instead can lose energy via bottom friction around the basin centre due to the large
bottom current there. To estimate the gross energy dissipation rate in a basin, it is
important to estimate the energy partition in these dominant modes at the starting
point.

Hydrodynamic models for large lakes are usually based on the hydrostatic
assumption, one that has been rationalized by noting that the horizontal length
scale is much larger than the vertical scale, rendering vertical advection negligible at
the leading order. However, if the horizontal field gradient becomes very large due
to nonlinear steepening, vertical advection cannot remain negligible, as demonstrated
by the numerical simulation presented in this study. The non-hydrostatic oscillatory
waves are usually of subgrid scale in large lakes. Even a non-hydrostatic model is
unable to capture the physics unless otherwise using sufficiently fine finite-difference
mesh. To improve the fidelity of the hydrodynamic models, there will be a need to
model the dissipation rate of such subgrid scale waves.

Our study has focused on the evolution of predominant modes in a context of weak
nonlinearity with weak topography perturbation in a circular basin. This simplicity
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is probably why the energy exchange between these dominant modes appeared very
weak. Sloping shelf and irregular perimeter are expected to greatly enhance such
modal energy transfer through bathymetric gyres and strong nonlinearity. It should
be added that the higher vertical modes are also expected to play an important role
in nonlinear energy transfer. These are important issues deserving future study.

The authors acknowledge the receipt of helpful comments from anonymous
reviewers.
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